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Abstract 

The fate of many construction projects is determined using preliminary project cost estimates. These estimates play a key role 

during the conceptual phase of projects; as in many cases they are the primary element used to decide their viability. The lack 

of information and the high levels of uncertainty with what will be done in the project, during the conceptual phase, make it 

infeasible to have reliable building information models that could be used to generate quantity takeoffs for preliminary cost 

estimates (known in the industry as 5D BIM), in line with a Level 2 BIM maturity. This paper presents a way to combine 

artificial intelligence (case-based reasoning and neural networks), with traditional techniques (regression analysis), to develop 

accurate estimates of the resources needed in a project (e.g., construction material quantities). These estimates of resources can 

then be coupled with unit cost information to make preliminary resource-based cost estimates. The clear division between the 

technical and financial components of such an estimate give improved decision support to project managers and decision 

makers. This enhances the tracking and control mechanisms which could be used to check the estimates prepared in subsequent 

project phases. The combination of case-based reasoning with regression analysis and the use of neural networks has shown an 

improved performance in the estimation of the amount construction material quantities. The proposed combination was used 

to estimate the amount of concrete, reinforcement, and structural steel required for the construction of tall-frame structures. 

The results show lower errors (overall mean absolute percentage error-MAPE) for the combined models (2.55%) when 

compared to the regression models (12.01%), neural network models (5.84%), and case-based reasoning models (9.30%). This 

type of estimates will help keep construction projects on schedule and on budget. 
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1. Introduction 

In the majority of projects requiring the use of significant amounts of capital, both financial and labor, the norm 

is that projects have a tendency to costs more than originally planned. Studies ([1], [2]) have shown that using 

current cost estimating practices over 80% of the projects investigated from different industries (e.g., oil and gas, 

chemical, power and utilities, mining and metals, EPC contractors, manufacturing, telecommunications, 

government and defense, transportation) were over budget with actual cost exceeding 40% of the original estimated 

amounts. This is not limited to a particular sector or country, but a general phenomenon that occurs in most 

industries and in most nations. In some cases if the true value of the construction costs were known at the approval 

stage, the project may not have been approved. In addition, cost estimates have not improved and cost overruns 

not decreased over the past 70 years ([3]). 

Preliminary cost estimates are the first thoughtful efforts to predict the cost of a project and they are crucial to 

the initial decision-making process for the construction of projects. These estimates heavily influence the fate of 

many projects, yet they have many limitations. Estimators at these early stages of a project’s life cycle are typically 

provided with very little information about the project, limited scope definition, and very little time to prepare this 

kind of estimates. 
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Preliminary cost estimates are typically carried out to support project evaluations, engineering designs, cost 

budgeting and cost management. Many methods have been developed in various industries to evaluate costs at 

pre-design stage ([4], [5]). In most cases, construction and infrastructure managers make estimates based heavily 

on their expert knowledge, missing the full use of the information that they possess and using a great amount of 

time and effort. In addition, cost estimating is a tedious and time-consuming quantification process, prone to human 

error which tends to propagate inaccuracies into the different line items of an estimate. 

2. State of the art 

The estimation models used can be very rudimentary or highly complex and proprietary. Many techniques for 

the estimation of construction cost have been employed by researchers and practitioners. While most practitioners 

use models based on regression analysis (RA) or make estimates based on their experience, some researchers and 

sophisticated owners and contractors use artificial intelligence (AI) techniques, such as neural networks (NNs), 

and case-based reasoning (CBR). In some cases, combinations of techniques have been used. 

The concept of combining estimates to improve the estimation in not new. [6] suggested combining estimates 

through regression. However, it was the work of [7] and [8] that provided the initial impetus to the development 

of a theory in the combination of estimates. Combining estimates is especially useful when it is not clear which 

method would provide more accurate ones ([9]). 

The purpose of combining estimates is to use each model’s unique features to capture different patterns or 

features in the data set ([10]) and by combining estimates from different models, the accuracy can often be 

improved over the individual estimate ([11]). In the construction industry, the concept of combing different 

techniques has been explored by different researchers to develop cost estimates (Table 8). 

Table 8: Combination of different techniques to develop cost estimates in the construction industry 

Source  Estimate for Combination of 

[12]Choi et al. (2013)  Cost of public roads in Korea RST, CBR, and GA 

[13] and [14]Jin et al. (2012) and Jin et al. 

(2014) 

Cost of construction projects CBR and MRA 

[15]Kim (2013) Cost of highway projects in South Korea AHP and CBR 

[16]Kim and Shim (2013)  Cost of high-rise buildings in South Korea  GA, CBR 

[17]Kim et al. (2005)  Cost of residential buildings in Seoul, Korea NN and GA 

[18]Koo et al. (2010) Cost and duration of multi-family housing projects in 

Korea 

CBR, MRA, NN, and 

GA 

Legend: NN: Neural network; GA: Genetic algorithm; CBR: Case-based reasoning; NFS: Neuro Fuzzy System; AHP: Analytic Hierarchy 

Process; MRA: Multiple Regression Analysis; RST: Rough Set Theory 

 

Although the combination of techniques to develop cost estimates provided good results, these estimates 

typically provide a single monetary value and they lack the information needed to make meaningful comparisons 

with other, more accurate, estimates developed during the project’s life cycle. This also affects the information 

used in the different control tools available to project managers and limits applications (lessons learned) for future 

projects. 

The construction industry should take full advantage of new techniques and borrow expertise from other fields 

to implement methods such as AI, and adopt newer technologies, such as digital modeling software that allows 

computer generation of n-dimensional models (generally associated with Building Information Modeling) to 

improve the accuracy and reliability of preliminary cost estimates. To this end, a way to assist the estimator in the 

preparation of reliable and traceable estimates made during the project conception phase of construction projects 

is presented in this paper that shows a way to develop preliminary estimates for resources (e.g., construction 

material quantities-CMQs) combining AI approaches (e.g., NNs and CBR) and traditional techniques (e.g., RA). 

As done by other researchers (e.g., [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]) the 

preliminary estimates were made for the amount of resources (e.g., CMQs) to be used in a given project so that 

there is a clear separation between technical estimates (e.g., quantities) and market fluctuations (e.g., cost of 

materials and labor). 

3. Combination of AI approaches and traditional techniques 

In the study presented in this paper, RA, NNs, and CBR were used to make preliminary CMQ estimates in a 

systematic, reliable, and accurate manner. Multiple regression was used to develop regression models using a 
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particular type of nonlinear relationship (Equation (1)), known as the constant elasticity or multiplicative 

relationship ([32]). 
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Where,  

Y :   Output from the regression equation 

βo :  Constant 

β1→ βn : Coefficients for continuous variables 

βn+1→ βn+m : Coefficients for categorical variables 

X1→Xn : Continuous independent variables 

X(n+1)→X(n+m) : Categorical independent variables 

e :  Euler's number 

SEE :  Standard error of the estimate 

 

The NN models developed were fully connected feed-forward network with three layers (one hidden layer) 

using the back-propagation supervised learning algorithm. The independent variables from the regression models 

were used as the neurons in the input layer. 

CBR was used with its four phases, namely retrieve, reuse, revise and retain [33]. The retrieve and revise (i.e., 

adaptation) phases were modified using information from the regression models. 

The combination of the AI approaches and traditional techniques is summarized in Figure 10. The coefficients 

from the developed regression models for a given CMQ were used by the retrieval and adaptation phases in CBR, 

and the independent variables (IVs) were used to determine the neurons in the input layer of the NN models, which 

provided better results for complex and highly non-linear cases. These models were also used to perform direct 

estimations in the cases where similar structures were not found using CBR (i.e., CBR cannot be used). 

Develop NN models using IVs 

from RA as input neurons

Perform resource-based estimate 

for new project

Develop regression models

Complete estimate

Develop CBR models using 

coefficients from RA for retrieval 

and adaptation phases

Can 

estimate use 

CBR?

Use regression / NN model with 

better performance

no
Use CBR model

yes

 

Figure 10: Interaction among the different techniques used to make CMQ estimates 

Three basic concepts were kept in mind when developing a way to develop CMQ estimates, they were: learning, 

adjusting and estimating. These concepts were integrated by combining RA and AI. 
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 Learning from historical data 

The combined techniques made use of the CMQs of existing structures to estimate the CMQs of target 

structures, i.e., the ones for which the CMQs are to be estimated. The target structures were compared to the 

existing ones by determining their similarity based on the values of numerous parameters. The most similar 

structures were used as the basis of the estimate for the target structures. 

This was done by using CBR, in particular during the retrieval process. The proposed retrieval process used the 

city-block distance with the adjusted unstandardized coefficients obtained from RA as shown in [34]. 

 Adaptation of proposed results 

The CMQs of the similar existing structures were adapted. This adaptation accounted for the differences 

between the target and the existing structures by adjusting the proposed estimation of CMQs for the target structure 

when applying the selected estimation model. This adaptation was done by incorporating a systematic process in 

which the regression models were used as the basis of the adaptation process. More information about this 

adaptation process can be found in [35]. 

 Direct estimation 

Estimates of the CMQs, if no similar structures were found, was done by directly using either the regression of 

the NN model developed. More information about the development and evaluation of estimation models using RA 

and NN can be found in [31]. 

4. Estimate CMQs for a new project 

The CMQs for the structures in the target project were estimated using a combination of RA, NN, and CBR, 

which interacted with each other to provide accurate results. The coefficients from the developed regression 

models for a given CMQ were used by the retrieval and adaptation phases in CBR, and the independent variables 

(IVs) were used to determine the neurons in the input layer of the NN models which provided better results for 

complex and highly non-linear cases. These models were used to perform direct estimations in the cases where 

there were not similar structures identified using CBR (Figure 10). 

Using CBR, similar structures were identified and used as the bases for the new estimate. This provided the 

transfer of knowledge (i.e., learning from historical data) to this process. The CMQs from the similar existing 

structures were adjusted to take into consideration the differences between the values of the input parameters from 

the target structure and the similar existing structures. In the cases where CBR was not applicable, either RA 

models or NN models were employed to complete the estimate of CMQs for the new project. Throughout this 

phase the “bases for the estimated CMQs” (e.g., the parameters used and the assumptions relied upon in the 

estimating process) was tracked and documented. 

 Implementation 

Models were developed using RA, NN, and CBR to estimate the amount of CMQs required in the construction 

of the upper structure and foundation of tall-frame structures. The information used to develop the models was 

limited to the information that would be readily available to the estimator during the early stages of a project. The 

tall-frame structures had a rectangular area and were built of reinforced concrete and structural steel. A total of 

148 tall-frame structures with the characteristics shown in Table 9 were used for model development and model 

testing. The set was randomly divided into a set of 118 for testing and 30 for testing the model. 

Table 9: Characteristics of tall-frame structures used to estimate CMQs 

 

Parameter Max Min Average 

Height (m) 158 94 134 

Footprint (m2) 150 35 84 

Wind speed (m/s) 54 31 41 

Ground acc. (S1xg) 1.32 1.02 1.16 

Soil BC (t/m2) 65 20 37 

Concrete (m3) 11,560 2,814 5,288 

Rebar (t) 1,879 442 842 

Structural steel (t) 734 367 542 
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The regression and NN models for each CMQ are summarized in Table 10 and Table 11 respectively. Table 10 

shows the coefficients from the regression models for the different materials estimated. Table 11 shows the weights 

between the input and hidden layer and hidden layer and output layer for the different NN models developed for 

each CMQ. 

Table 10: Regression models for the estimation of CMQs of tall-frame structures 

 

Table 11: NN models for the estimation of CMQs of tall-frame structures 

 

 Results 

The results obtained for the estimation of the amount of concrete, reinforcement, and structural steel using the 

combination of CBR, RA and NN models showed a close agreement between the actual and estimated amounts. 

An example is shown in Figure 11 for the amount of structural steel as can be seen by the closeness between the 

actual and estimated amounts. 

 

Figure 11: Actual and estimated amount of structural steel for the construction of tall-frame structures 
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The mean absolute percentage error (MAPE) of the estimates using the combination of CBR, RA, and NN was 

lower that the MAPE for the stand-alone models (i.e., without combination) for all CMQs estimated (Table 12). 

Table 12: MAPE for estimated CMQs with and without combination of AI approached and traditional techniques 

 Model type 

CMQ 
Combined  

(CBR, RA, NN) 
RA NN CBR 

Concrete (m2) 2.73% 12.58% 8.65% 9.09% 

Reinforcement (tons) 2.60% 11.39% 4.86% 9.56% 

Structural steel (tons) 2.31% 12.07% 4.01% 9.24% 

Overall MAPE 2.55% 12.01% 5.84% 9.30% 

5. Conclusion 

The combination of AI approaches and traditional techniques has proven to be an appropriate way to develop 

estimates of the resources needed in a construction, such as the amount of CMQs required. These estimates of 

resources can then be coupled with cost information to get preliminary resource-based cost estimates with a clear 

division between the technical and financial components. This type of estimates give better decision support to 

project managers and decision makers, and subsequently, enhance the tracking and control mechanisms used in 

subsequent project phases. The combination of RA, with NN and CBR has shown an improved performance in the 

estimation of CMQs of tall-frame structures when compared to the performance of these techniques alone as shown 

by the overall MAPE for the combined models (2.55%), regression models (12.01%), NN models (5.84%), and 

CBR models (9.30%). Although the implementation has been made for tall-frame structures, this approach could 

be suited for other structure types and other resources.  

The three concepts of learning, adjusting and estimating have been successfully integrated by combining RA 

and AI by using the coefficients from the developed regression models during the retrieval and adaptation phases 

in CBR, and the independent variables from the regression models as the neurons in the input layer of the NN 

models. Even in cases where CBR was not able to find similar existing cases, estimations were also possible by 

using the appropriate regression or NN model. 

This idea of combination of techniques to develop resource-based cost estimates has a wide ranging potential 

to be used for other types of infrastructure and many other types of projects. The development of preliminary 

estimates in this way will help estimators to make better estimates, and armed with this information, allow 

managers to make better decisions of what should be done and when. 
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