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Abstract 

In this paper, we are introducing a model for optimizing the arrangement of final material depots at a construction site that uses 

continuous conditions. The target is to minimize the construction time, cost and resources by minimizing the delivery distances. 

In this model, the feasible positions of the material can be used in a continuous or discrete way as the known models do, but 

the structures are used in a continuous way. A simple example demonstrates that the product can be modeled as a group of 2D 

elements (lines, curves) with third dimensional information and the calculated result is compared with an expert’s solution. The 

usability and the further generalization of the model are declared. It needs less input data than the discrete model does so it can 

be an alternative model to the discrete model if the number of the units that build up the structure is large or unknown. 
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1. Introduction 

One of the preliminary processes in the construction management is planning the construction process. Part of 

the construction planning process is construction site layout planning (CSLP), in which space, time, material, 

labour, money and equipment are recognised as resources [1, 2]. The target of CSLP is to minimise construction 

time, cost or required resources. Due to CSLP has significant impact on the productivity, cost, time, safety and 

security, several site layout planning models have been developed in the past decades. These were collected in an 

overview [3]. These models use the space in three different ways: predetermined location, grid system, continuous 

site space. The space types were clustered to five groups like total space, product space, installation space, 

available space and required space [2]. A partial task of the construction site layout planning (CSLP) is the 

allocation of construction objects on site. In practice, the construction objects allocation is carried out routinely 

[4] based on human judgment using the first-come-first-served method [5] or using the construction manager’s 

experience [6]. Due to the number of factors that are involved in the CSLP, computers were identified as an 

efficient tool for solving the problem, such as computer-aided systems that are CAD-based [7], AI techniques used 

[8] or genetic algorithms used [9, 10, 11, 12, 13]. The objects, the structure and the spaces are continuously adjusted 

at different phases of the construction project. Therefore, researchers have developed dynamic site planning 

methods as well, like max-min ant system etc. [14] or BIM-based models [15]. Most of the developed models 

identify the number and the size of the temporary facilities that serve the construction site, and then search for the 

optimal arrangement by minimizing the total transportation costs between the facilities or from facility to the 

structure to be built: 


 

n

i

m

j

ijij Rd
1 1

min   (1) 

_____________________________ 

* Corresponding author. Tel.: +0036-1-463-1461; fax: +0036-1-463-3554. 

E-mail address:apem@ekt.bme.hu 



 

324 

in where n is the total number of construction objects; m is the total number of constraining objects; dij is the 

travelling distance from the location of the construction object i to its ideal location concerning the constraining 

object j; Rij (RijQ) is the parameter that represents transportation cost or the weight of constraint between 

construction objects i and constraining object j [7]. The travelling distances can be calculated by using either 

Euclidean distance or rectilinear distance.  

The root of the CSLP problem is known as k-median problem in the operation research literature as a part of the 

location allocation problem (LAP), where the demand is understood as the structure that needs to be built, the 

density is readable as the volume of the structure and the facility is readable as the material depot. If the number 

of facilities (k) is one, the problem is known as the classical Fermat-Weber problem (1929) [16]. In the CSLP 

models the number k≥1 the facilities’ location can be calculated in discrete form by dividing the site into a given 

grid-based set of feasible location points and dividing the structures into unit areas or even in a continuous way 

using genetic algorithms or other artificial intelligence because of the infinite number of possibilities. Most of the 

LAP literature is based on discrete demand [17] like the known models of the CSLP where the target is to define 

the site objects’ space and shape by using a collection of unit areas. In this paper, a model is presented for the k-

median problem that uses the structures as continuous demand as line segments (as these were provided by the 

architect and engineers in their CAD drawings) and searches for the optimal arrangement on the entire XY plane.  

2. Assumptions and objective functions 

Architects and engineers define most structures with 3D CAD elements. The structures are represented by 2D 

marking with the Z directional information included on the drawings. Some structures are marked by symbols (e.g. 

pillars or windows), some are marked by line segments or curves (e.g. wall tiling) and some are marked by areas 

(e.g. floor tiling, concrete slabs or the boarding of the slab formwork). The material, size, volume and exact location 

of the structure are given in the architectural documentation in advance. In this paper the presented problem is very 

similar to the problem studied in an earlier paper of the authors [18] just here we deal with the structures that are 

marked as line segments instead of the areas. The structure is modelled as a two-dimensional figure denoted by the 

end points (Ai) of the line segments. 

 Assumption 1. 

The structures are marked by a group of line segments. The line segments that belong to a depot must look like 

a line segment-chain. A group of line segments consists of k pieces of line segment-chains. A line segment-chain 

consists of l pieces of line segments where the end point of each line segment is the beginning point of the next 

one that has a volume W>0 if it is possible. Each line segment piece is defined in advance by its endpoints Ai(x,y), 

(i=1…m, mN) and each line segment piece has a Wi volume that represents the Z directional volume of the 

structure Vs. 

 Assumption 2. 

The material laydown is denominated as the final material depot from where the material is delivered to the 

structure in units. The final material depots are represented by the projection of their centre of gravity S (x, y) to 

the XY plane. One type of material depot usually consists of a certain number of material elements resulting in 

equal material depot volumes Vd. The number of the required depots (k, kN) can be easily calculated by dividing 

the volume of the structure by the volume of the final material depots. k= Vs/ Vd. 

 Assumption 3. 

According to Moore [19] there are two basic methods to deal with the CSLP problem. One is placing some of 

everything everywhere (or in a couple of combinations) and picking the best from these. The other method that is 

used in this paper is by bringing objects in one by one in a certain order and calculating the optimal arrangement 

after each step [11]. The model deals with one type of material at a time. 

 Assumption 4. 

The handling paths from a depot to each point of the served structure (to each point of the line segments) can 

be calculated by two ways: using Euclidean distance or the shortest path inside the feasible handling area. In this 

study we use and measure the Euclidean distance in an unusually way. The length of the total delivery path from 

a certain point to the structure is counted by the measure of the areas (Ti) that are defined by the modeled structure’s 
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2D marking (Figure 1.a.) and the vertical projection of the marking to the envelope of the Euclidean cone, that is 

set into that certain point. In this case where the structure is marked by line segment (AiA(i+1)) or curve and defined 

by its endpoints Ai(x,y) the total delivery path from a S(a,b) point to the structure is counted as areas (line integrals) 

as shown on Figure 1.b. 

 

 Figure 1.a. 2D marking of the structure Figure 1.b. The length of the total delivery path 
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Where T represents the size of the area bounded by the 2D marking, the vertical projection of it onto the Euclidean 

cone, the  d is an extremely small change in arc length of the curve, Ai’ is the distance between Ai and S points, 

 

 Objective function  

The objective is to find the allocation of the final material depots, where from the material can be handled by 

pieces to their built-in locations along the minimal length of paths. This model leaves out of consideration the 

delivery cost because the model assumes that all of the delivery paths are horizontal and the delivery cost is directly 

proportional to the length of the delivery path and brings in one type of object at a time. The target is to minimize 

the length of the total delivery path. 

2.5.1. In the case of k=1  

The line segment-chain is given and the minimization form can be solved by any kind of two-parameter 

minimization:  
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2.5.2. In the case of k>1 

There are infinite solutions because the start points and the end points of each line segment-chains are unknown. 

If any point of the line segment-group is renamed as cut-point (C) for dividing the structure to unique volume k 

pieces of line segment-chains, then each of the line segment-chains is defined and the minimum of the sum of the 

delivery paths (areas) for that certain cut-point can be calculated. The minimization form for the case of k>1 and 

cut-point is defined is:  
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In where C(Ai,Ai+1) is the cut-point for dividing the group of line segments to line segment-chains, 

EK(Ai,Ai+1) is the end point of each line segment-chain, k (kN) is the number of the needed depots; l (lN) is 

the number of line segments that belong to the certain depot; W(i, i+1) (WQ) is the Z directional volume of the line 

segment between Ai and Ai+1 (defined by the volume of the structure); aK and bK is the x and y coordinate of the 

searched SK depots on the entire XY plane. 

 

The object is to find C for the global optimal arrangement. If we place Ci to each Ai and solve the equation m 

times each counting will give a minimum of the total delivery paths that belongs to k pieces of Rj points. If we 
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place the cut-point anywhere on the line segment between Rj and Rj+1, the solution will be a member of a curve 

(fR) that has one minimum or one maximum point. If the curve is concave then Rj or Rj+1 will be the location of the 

cut-point for the local minimum solution between Rj and Rj+1. If the curve is convex, the minimization of the curve 

between Rj and Rj+1 will give the location of the best cut-point and will result in the minimum of the total delivery.  

 

The global minimum of the model is the lowest result of all the counted local minimums. This means the 

minimization has to be solved 2m times (m times for all Aj and m times for all the curves between Rj and Rj+1) to 

find the global minimum of the model. 

3. Example 

In this example the target is to find the optimal allocation of the final material depots (S(a,b)) for the wall tiling 

work of a rectangular room (Figure 2.) from where the material units can be delivered to the structure along the 

minimal path.  

 

 

Figure 2.given drawing by the architect and the transformed information into the model 

The volume of a material depot, the volume and the geometry of the tiling work with Z directional information 

is provided in advance (Vd, Vs, Ai(x,y)) (Figure 2). The number of the needed depots is calculated: k= Vs/ Vd. 

Vs=3x(10+5+10+5)-(3x1,5)-(1x1,5)-(2,5x1,5)-(1x3)=77,25 m2; Vd=25,75 m2; k= Vs/ Vd=3 pieces 

In this example x=t or y=t. At first all Rj has to be found by measuring counterclockwise k pieces Vd volume line 

segment-chains from all Ai and mark their coordinates. We have m=12 pieces Ai and we have (k-1)m=24 pieces 

Eik. 

After all of the relevant points are found then the local minimums of the total delivery paths are counted by a 

program called Mathematica 7 for each Ai as cut-points. The minimization form ran 12 times and gave the 

minimums of the sums of the total delivery path for all Rj (Table 1).  
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In this case the optimal allocation of the depots belongs to the cut-point of R10=R11=A10=A11 as readable on 

Table 1. and shown on Figure 3.a.  

4. Accuracy of the results 

The architect drawing of this example was provided to a professional bricklayer. The expert was asked to mark 

the best arrangement of the three depots and the parts of the structure that he would serve from each depot for 

minimizing the total delivery path. His solution is shown on Figure 3.b. where the surfaces of the walls are turned 

to the XY plane and each color represents the surface of the structure part that he would serve from a certain depot. 

It is readable on Figure 3.c. that from the first depot (S1) he would serve a bigger volume structure part than a depot 

volume is, and from the other two depots (S2, S3) he would serve smaller volume structure parts. Based on the 

technology itself and the equal volume of depots the first depot will run out of the material before the tiling work 

is done, so he would need to deliver the material from the other two depots. With the expert’s solution, the workers 

would deliver the materials a 69.91% longer path than was counted as the optimal arrangement shown on Table 1. 
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  Figure 3.a. An the lowest solution of all counted equations Figure 3.b-c. The expert’s solution paper and in real 

This 69.91% increment of the total delivery path is impressive if we declare that the increasing of the total 

delivery path by 7% causes a measureable raise in the total delivery time [20]. Based on this experiment, the 

searching for C to find the optimal arrangement is worth the time because the worst minimal solution for different 

cut-points (row R6 on Table 1.) is 12.12% worse than the optimal arrangement (row R10 on Table 1.). It must be 

recorded that the arrangement of the final material depots is not enough for minimizing the sum of total delivery 

path, the served structure parts are needed to be defined for each depots. 

5. Generalization of the model and conclusion 

In this example, the location of each depot was searched on the entire XY plane, but it could be localized into 

a certain place as available space [2]. This example was solved for a convex shaped structure and the model 

counted the lengths of the delivery paths by Euclidean distances, but it can deal with obstacles and concave 

structures in exactly the same way as the discrete model does by dividing the area up into areas named ‘visible 

from’, ‘partly visible from’ and ‘not visible from’ [21]. In this example, the delivery cost was left out of 

consideration because the allocation of only one kind of material depots was searched for and the delivery paths 

were horizontal to every directions but this model can be integrated to the models that minimize the total delivery 

cost as well. It needs less input data than the discrete models do because it does not need the number and the exact 

places of the units that build up the structure. This model can be an alternative model to the discrete model even if 

the number of the units that build up the structure is large or unknown because in this case the required time for 

the calculation can be significantly less and the difference between the solution of these two models is negligible. 

Table 1. The sum of the total delivery path for each Ri 

Rj  Sk 

   Ri(x) Ri(y)  S1(a) S1(b) S2(a) S2(b) S3(a) S3(b) 

R1 A1 0 0 16,64 4,29 0 9,25 4,125 1,002 4,339 

R2 E8,1 0,33 0 16,49 0,811 4,161 4,625 0,001 9,054 4,316 

R3 E5,2 1,42 0 16,82 8,384 4,736 0,392 3,521 5,696 0,023 

R4 E9,1 1,58 0 16,94 0,357 3,418 5,853 0,033 8,273 4,778 

R5 E6,2 1,92 0 17,22 8,033 4,848 0,308 3,199 6,334 0,082 

R6 E7,2 4,4 0 18,22 5,71 5 1,043 0,828 9,192 1,103 

R7 E10,1 4,58 0 18,2 1,136 0,727 9,278 1,204 5,54 5 

R8 A2 6 0 17,21 9,708 2,359 2,91 4,967 2,014 0,209 

R9 A3 9 0 16,28 9,672 3,454 1,668 4,75 3,219 0,016 

R10 E11,1 9,07 0 16,25 3,292 0,011 9,65 3,505 1,606 4,726 

R11 E12,1 same as R10 

R12 A4 10 0 16,45 9,293 4,077 1,049 4,379 4,21 0 
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