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Abstract 

Float in project schedules can provide important protection for activities if delays occur. Traditionally, total float exists along 

noncritical paths and shared among these activities. This has given rise to the longstanding question of who owns float. 

However, by definition the critical path lacks the unique flexibility provided by float. This conundrum is newly addressed by 

explicitly assigning float from the project finish as a buffer. Another more specific question appears: If each critical activity is 

entitled to a portion, what should its share be to protect the project? And how well does it fulfill the criterion of fairness, since 

activities are typically performed by different companies? Political apportionment is an established area to fairly distribute 

parliamentary seats by the votes that representatives have received. It provides systematic quota calculation with rounding 

methods to give consistent integer results that consider the relative size, i.e. importance, of competing participants. Inspired by 

apportionment, this research adapts a methodology to solve the problem of optimizing float allocation. Its contribution to the 

body of knowledge is twofold: First, float allocation is integrated with various apportionment methods. Second, an index is 

created to compare their performance based on Monte Carlo simulation. This research thus transforms float from being a passive 

byproduct of schedules to an active asset with which project managers can reduce delays. It builds a foundation for future 

research on active float management. 
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1. Introduction 

Time performance is a crucial aspect in project management. Construction delay, which is defined as “an act 

or event that extends the time required to perform tasks under a contract” (Stumpf 2000, p. 32), is the main 

contributor to bad time performance suffering the construction industry (Birgonul et al. 2015). For example, 

Mahamid et al. (2012) studied road construction firms in Palestine. The results showed that 75% of contractors 

had experienced 10-30% as a delay magnitude, 20% even indicated that their delay magnitude was 30-50%. A 

statistical analysis of road projects in Indiana found 1655 of 1862 (89%) delayed (Bhargava et al. 2010). Menches 

and Hanna (2006) studied electrical projects in the U.S. Among 60 responses, 53 projects (88%) were delayed. 

While an even more abundant literature exists that contain similar alarming delay statistics, for brevity only a 

selection of them has been listed here. 

Reasons for poor time performance are twofold: 1. An as-planned schedule that is too tight; or 2. the as-built 

time performance is indeed poor. The former is beyond the scope of this paper and will be covered by future 

research. But for the latter, buffers and total float (TF) are the two basic protection mechanisms that provide “a 

cushion or shield against the negative impact of disruptions and variability” (Russell et al. 2014, p. 2). Scholars of 

the critical path method (CPM) have emphasized the classic ‘who owns float’ problem, where TF “represents the 

length of time an activity’s finish date may be delayed without affecting the completion date of the entire project” 

(de la Garza and Vorster 1990, p. 716). “Total float is a by-product of critical-path-method calculations” and should 

be traded as a commodity between project participants (ibid.). Time performance is directly related to contractual 

reward / penalty schemes, i.e. bonuses or liquidated damages. Thus how to fairly allocate such float is important 

for all participants. 
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2. Literature Review 

 Float / Buffer Allocation 

Float and buffers “are two closely related phenomena that only differ in whether they are intentional” (Lucko 

et al. 2016, p. 2). Both of them can be used to protect the project finish from delays. Yet activities in a project 

schedule are conducted by various participants (owner, general contractor (GC), or subcontractors). “The 

complexity of distributing the float among these parties stems from the fact that the TF belongs to the path, not to 

the activity, and there can be many project parties on the same path” (Al-Gahtani 2009, p. 88). So does the buffer. 

Previous research can be grouped as participant-oriented versus activity-oriented. The former deals with float in 

terms of whether the owner or GC owns it, and is “based on the basic concept that the party who has the greatest 

risk in a project should be entitled to float ownership” (Al-Gahtani 2009, p. 88). But its problem is that a contractual 

risk factor is defined as a constant percentage, but it “should be changed for each activity based on the contract 

terms” (ibid., p. 92). As a result, a solution for participant ownership would still have to subdivide contract risk 

factors by what actual work they self-perform (owner) or perform (GC). For activity-oriented, Pasiphol (1994, p. 

94) advocated to “distribute more total float to activities requiring more time to be completed”. But such research 

was based upon a fixed as-planned schedule without considering any probabilistically distributed durations, and 

its concept ‘float in proportion to duration’ would require mathematical analysis of its fairness. Inspiration is 

provided by political apportionment in Federal systems: For the example of the E.U. (Kirsch 2007, Pöppe 2007), 

it was proven that assigning voting weight in proportion to the square root of the population n of each country will 

strike a perfect balance between ‘one vote per country’ that is proportional to n0 versus ‘one vote per person’ that 

is proportional to n1. An opportunity exists to adapt this successful approach to solve how to fairly allocate a buffer 

or float specifically to the critical activities. 

Critical Chain Project Management (CCPM) was developed to ensure a timely project finish by inserting limited 

buffers and imposing a general sense of urgency. It protects the time performance of critical activities with a single 

project buffer (PB) at the end of the critical chain. It analogously protects noncritical activities with feeding buffers 

(FB) at the ends of non-critical chains (Herroelen and Leus 2001), i.e. merges of side paths. If an activity is delayed, 

the FB will act as a local cushion or the PB as a global cushion. “But this approach radically cuts activity durations, 

assuming that they harbor individual float, returns half of it as a single large end buffer [PB], and then accepts that 

said ‘block’ is consumed fully without tracking by whom” (Lucko and Su 2016, p. 1). The CCPM has drawbacks, 

notably that (a) aggressively cutting their initially planned durations in half, then aggregating half of the summed 

cuts back into PB (Goldratt 1997) is regrettably not founded on any scientific approach or real-world data, (b) 

while it seeks to protect its critical chain (akin to critical path), it does not explicitly allocate PB, which can cause 

legal disputes over delay claims, and (c) it is fundamentally unfair, because it espouses a ‘first-come, first-serve’ 

tactic. 

Table 1 compares float / buffer ownership approaches from the literature (e.g. Al-Gahtani 2006, Al-Gahtani 

and Mohan 2007, Arditi and Pattanakitchamroon 2006, Prateapusanond 2003, Pasiphol 1994, de la Garza et al. 

1991, Householder and Rutland 1990, Ponce de Leon 1986). Problematically, they either contradict each other 

(Al-Gahtani 2009), (owner versus contractor approach), or leave unclear how to fair split should be achieved 

(project approach). 

While some approaches suffer from an unclear split between owner and GC, others are activity-oriented and 

focus on subcontractors who perform the actual work. Some require ex post analysis (bar and day-by-day 

approaches). But only the total risk approach provides an explicit percentage of TF ownership a priori. Such 

PB/FB or TF approaches have a similar time-related object – buffer or float. As has been mentioned before, their 

difference is that the former is intentionally imposed by the CCPM scheduler, while the latter is calculated as an 

artifact of the activity durations and links in the schedule. But except for CCPM, which has the aforementioned 

drawbacks, all of these ownership approaches can only handle TF and do not protect the critical path, which by 

definition urgently lacks protection. 

Yet extra ‘contract float’ (CF) exists between the as-planned project finish and the contract due date (O’Brien 

and Plotnick 2009, Keane and Caletka 2008). This paper assumes that uninflated activity durations that are based 

purely on a realistic productivity are known to calculate the ‘raw’ project finish. This CF is the only time 

contingency that is available specifically to critical activities. But it currently lacks an explicit allocation method. 

Therefore this research poses a question: How should CF be use optimally to protect the critical path, i.e. how 

should it be allocated fairly? 
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Table 1: Comparison of Float / Buffer Ownership Approaches 

Approach Critical Non-Critical Participant Allocation 

Owner Ownership N/A TF Owner 100% 

Contractor Ownership N/A TF GC 100% 

Project Approach N/A TF Owner / GC x% / x% * 

Equal Proportion N/A TF Owner / GC 50% / 50% 

Bar Approach N/A TF Activity Consume TF, then excuse 

Contract Assigns Risk N/A TF Owner / GC x% / x% * 

Path Distribution N/A TF Activity Based on duration 

Day-by-Day Approach N/A TF Activity Track TF changes 

Commodity Approach N/A TF GC Trade TF for cash 

Total Risk Approach N/A TF Activity TF proportion to risk 

CCPM Method PB FB Activity First-come, first-serve 

* Undefined in case law. Note: PB (FB) at end of (non)critical chain; TF shared along noncritical path. 

 Political Apportionment 

Political apportionment deals with the issue that “electoral votes must be translated into specific seat 

allocations… [t]he seat allocations are of course integer numbers” (Schuster et al. 2003, p. 652). Suppose P total 

votes are given to n parties, with pi votes for the ith party, where ∑ pi =P. A total of N seats must be apportioned to 

these parties. Thus the party percentage is pi / P. The exact allocation (often called fair share or quota) is qi = N · pi 

/ P. But this value is not always the required integer, as fractional seats are impossible. Calculating seats from 

votes thus is adjusted, for which various apportionments have emerged, including largest remainder (LR) and 

divisor methods (e.g. Jefferson, Adams, Huntington-Hill, etc.). The LR first rounds quotas down to the nearest 

integer (qi). The difference between their sum ∑qi and N are the leftover seats. Next it takes the party with the 

largest remainder, max(qi - qi), and assigns one leftover seat. If seats are still left, assigns one to the second 

largest remainder, andsoforth. But LR suffers from the so-called ‘Alabama Paradox’ that increasing N by a day 

may counterintuitively cause the smallest party to suddenly lose a seat, because rounding the revised values may 

give a slightly different integer allocation to all parties (Wiseman 2001). The latter includes several methods that 

seek a proper divisor λ. The Greatest Divisor (GD) and Smallest Divisor (SD) methods differ only in that the 

former rounds down the quota divided by λ, but the latter rounds up. Geometric Mean (GM), Harmonic Mean 

(HM), and Arithmetic Mean (AM) use different means: Both GM and HM round down quotas fi = qi and calculate 

the mean of fi and fi + 1; AM takes the arithmetic mean, but different from the other two mean methods it rounds 

to the nearest integer, instead of always rounding down. Then GM and HM compare the quota with the mean to 

judge if fi and fi + 1 should be used; AM just rounds the operant to the nearest integer. Note that the quota qi in 

GM and HM may not yet equal N. In such case, qi is adjusted through a divisor. Divisor methods require time-

consuming iterations that can be automated with computer programming. 

Analogies exist between political apportionment and float / buffer pre-allocation (Lucko and Su 2016): 1. The 

goal is to fairly apportion an limited asset; 2. seats or float / buffer represent a power of entitlement (party in 

politics, activity in schedule); 3. results must be integers (seats or time unit like workdays) whose sum must equal 

the total amount that is available. Therefore it is feasible to newly apply political apportionment methods to float 

/ buffer pre-allocation. Two Research Objectives are set to address the Research Question of optimally pre-

allocating the CF: 

 Inspired by political apportionment, create a float pre-allocation method whose quota is based upon activity 

duration with variable exponents to evaluate the protective ability in proportion to n0, the square root n0.5, and 

n1. 

 Create a measurement index to evaluate the performance of Monte Carlo simulations of the LR and AM 

methods. 

3. Methodology 

Applying political apportionment to pre-allocating float / buffer to each critical activity has these steps: First, 

inputs of activity name, duration Di, and sequence are used in CPM to identify critical activities. Second, calculate 

Di to the power of n akin to ‘votes’ (pi) for each critical activity. Third, incrementally increase the float / buffer 

akin to ‘total seats’ (N) and select an apportionment method. The output is an allocation of float / buffer like 

apportioning seats to each party (si). Fourth, run a Monte Carlo simulation L times to generate randomized as-built 

schedules with delays from given probability distributions for each activity. Fifth, calculate any overrun of the 

fixed duration Di as an integer time, e.g. di - Di and compare it with the allocated float (si). Sixth, for each critical 
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activity calculate the discrete count of overruns out of L times, and the overrun period (di - Di) - si. Seventh, plot 

the simulation results of discrete count and overrun period over the incrementally increased CF. They are expected 

to be decreasing stepped 2D profiles of counts over time (discrete performance) and period over time (continuous 

performance). Eighth, calculate statistical indices for each profile to quantify their protective ability against delays: 

The arithmetic mean for each profile between the times when the profile begins to decrease and when it reaches 

zero (and is thus saturated with float so that delays can be fully mitigated). Then calculate minimum, mean, 

maximum, and standard deviation of these averages. Finally, after running simulations for all apportionment 

methods and all exponents, select the best combination of method and n, which should have the smallest mean and 

standard deviation for its discrete and continuous performances. This new methodology has integrated the float 

pre-allocation with political apportionment and fulfills Research Objective 1. Critical path changes are not 

examined, but will be addressed by future research. 

4. Validation 

A validation schedule is selected from the Project Scheduling Problem Library (PSPLIB, Kolisch and Sprecher 

1996). It has 30 activities plus one dummy start and finish. The authors have developed a computer program that 

can automatically visualize the network per Figure 1. Since the PSPLIB data only include the sequence of activities 

and fixed durations, this paper adds a probability distribution for activity durations. Users can specify any type of 

distribution. Here, 90% and 150% of the fixed mode is used as the lower and upper limits of a triangular distribution. 

Note that fractional overruns are rounded up to count them as integer days, the basic time unit that is assumed 

herein. While this example only contains Finish-to-Start links, the computer program and method can handle any 

link type. 

The optimistic, most likely (mode), and pessimistic project durations are 34.2, 38, and 57. Theoretically the 

most float that should be required is the difference between the pessimistic and the optimistic duration, which is 

22.8 days. 

 Simulation Outputs 

Figures 2 and 3 present the count and period profiles for the three exponent cases with two methods (LR and 

AM) after 100 simulation runs. Note that all profiles in the count figures start below 100 counts, because some 

randomly sampled durations from the triangular distribution are shorter than the mode, so that no overrun occurs. 

As expected, all profiles decrease with increasing CF – the more float is allocated, the more each activity receives 

and the less often they overrun. The upper three plots in Figure 2 are the count profiles for exponents 0.0, 0.5, and 

1.0 and LR, while the lower ones are the period profiles. In terms of the maximum of the averages of decreasing 

range, the n = 1.0 case provides the optimum (least) value of 13, compared to 19 and 15.5, respectively. But in 

terms of the mean of the averages, n = 0.5 is the best (2.84, compared to 3.05 and 3.10. Thus the group trend shows 

that the square root approach is better. Interestingly the Alabama Paradox is seen in the dashed circles when CF 

changes from 18 to 19 for n = 1.0; a peak shows how a short activity briefly receives less float, is more vulnerable, 

and may incur overruns. 

 

Figure 3 shows the count and period plots for AM with the 

same exponents. Characteristics similar to LR are seen. The 

Alabama Paradox disappears, because of the different 

apportionment; AM requires searching for a proper divisor 

iteratively. But different from political voting, some critical 

activities may have exactly the same mode duration and thus 

share the same quota. If so, the divisor method cannot provide a 

solution for certain CF values. Two adjustments are therefore 

made to gain a continuous profile: 

 An increment (0.001) is added to (or deducted from) 

activities with the same initial duration, so that they have 

different quotas. It does not alter the solution, as it does not 

affect the duration structure within the schedule, but 

distinguishes their power; 

 If no optimal solution can be found for a specific CF, then 

the solution from the previous smaller CF is kept. This 

ensures that at least such a suboptimum solution is provided 

as valid output. 

Figure 1: Network of the J30_1 Schedule 

Comparing the statistics for the outputs of Figure 3, the group trend again indicates that n = 0.5 is the most 

efficient way (the mean of averages is 2.74, compared to 2.90 and 3.06) to pre-allocate float to protect the critical 
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path from delays. Table 3 lists all results numerically (the minima are omitted for brevity). Its best combination is 

highlighted in bold. Interestingly, the results for n = 0.5 and n = 1.0 tend to be closer together. This is because pre-

allocating the same float (n = 0.0) ignores any differences among activities. The best combination is AM and n = 

0.5. 

 

    
Figure 2: Count and Period Plots of Largest  

Remainder Method Simulation 

Figure 3: Count and Period Plot of Arithmetic  

Mean Method Simulation 

 Discussion 

Comparing the statistical metrics of Table 3 has revealed that exponent n = 0.5 of the mode duration and the 

AM method should be selected when using the quota to determine the optimum float pre-allocation. In this 

combination, the apportionment method gives the smallest mean of the averages. This means that in most cases of 

the simulation the critical activities are ideally protected by their allocated integer part of CF. Both counts and 

periods of overrun confirm this observation. Theoretically, the method of using n = 0.5 should be fairer than 0.0 

and 1.0. Exponent 0.0 unfairly favors short activities, because all critical activities have the same quota. Here short 

ones stop overrunning quickly and any extra allocated float is wasted, because their need is also small. Conversely, 

only a high value of CF would eventually saturated long ones. Such behavior relies on the assumption that risk is 

approximately proportional to duration, which has been used as a proxy for it. If shorter activities are riskier for 

some reason (Al-Gahtani 2006), then the model should not use duration, as has been described here, but a direct 

numerical value of risk for its quotas. 

 
Table 3: Comparison of Apportionment Methods 

Exponent 0.0 0.5 1.0 

Method Max Mean Std. Max Mean Std. Max Mean Std. 

Largest Remainder 19 3.0484 5.4747 15.5 2.8387 4.7353 13 3.0968 4.9857 

Arithmetic Mean 15 2.9032 5.0833 15.5 2.7419 4.5586 13.5 3.0645 4.9728 

 

The opposite happens for exponent 1.0, which strongly (directly proportionally) favors long activities. Any 

short ones are deprived of power to receive enough float and some may even never receive any. Note that the 

difference between durations among critical activities is a non-negligible factor, because it strongly affects how 

quotas are distributed. For example, a group of critical activities with very close durations {1, 2, 3, 4, 5}, and 

another with very diverse durations {1, 1, 1, 2, 10} might perform differently for n = 0.5. This exponent is not 

always the best option, but each specific schedule may have a customized optimum exponent. This notion is 

beyond the scope of this paper and is left for future research. Comparing the simulated performance of LR and 

AM fulfills Research Objective 2. 
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5. Conclusions 

Existing float ownership literature has unfortunately only focused on distributing TF, while CCPM is allocating 

buffers to provide a time cushion at the end of each chain without any scientific underpinning. A method to 

explicitly pre-allocated CF to the critical path has been lacking. This paper therefore has provided a detailed new 

methodology that integrates political apportionment methods into float allocation to answer ‘who should own the 

float and how much to given to each critical activity?’ Steps have included: 1. The CPM calculation of a fixed 

duration schedule to determine critical activities; 2. calculating a quota for each critical activity with different 

exponents (0.0, 0.5, and 1.0) and using various apportionment methods to obtain the float pre-allocation; 3. running 

Monte Carlo simulations to generate randomized schedules with a given probability distribution and comparing if 

the delay of critical activities overrun their allocated float or not by recording both overrun counts and periods. 4. 

plotting these results over the increasing amount of float, and determining the minimum, mean, maximum, and 

standard deviation of the average time when the profiles degrease. Validation by comparing results from simulating 

a PSPLIB schedule has shown that this method can select an ideal apportionment method and its exponent to 

provide optimum protection. 
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