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Abstract 

In construction projects, activity durations can be expedited by allocating additional resources. Decreasing activity durations 

by means of crashing, usually leads to increase in the direct expenses. This trade-off between time and cost is called as the 

time-cost trade-off problem. Since in practice many resources are available in discrete units, numerous research has focussed 

on the discrete version of this problem called the discrete time-cost trade-off problem (DTCTP). Achieving the project schedule 

that satisfies the project requirements at an optimum cost is crucial for effective scheduling and management of construction 

projects. Despite the importance of DTCTP, very few research focused on generating and solving of large scale instances. The 

objective of this proceeding is to generate large scale instances that reflect the size of real-life construction projects and to solve 

these instances using mixed integer programming method (MIP) to enable a benchmark set with optimal solutions. Within this 

context, large scale instances that reflect the size of real-life-size construction projects are generated. A MIP model is developed 

and the majority of the instances is solved to optimal using GUROBI optimizer. 
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1. Introduction 

Construction projects have a certain scope, budget and schedule. Especially, throughout a construction project, 

budget and schedule have essential effects on each other. Schedule of a project may be shortened by means of 

expediting activities that requires working overtime or increasing crew size. Accordingly, crashing a project 

schedule leads to additional cost. This trade-off between activity durations and costs is defined as time cost trade-

off problem (TCTP). In the construction industry, the majority of resources are available in discrete units; hence, 

numerous researches have been conducted on the discrete version of the problem called as discrete time cost trade-

off problem (DTCTP). 

In the literature, DTCTP has been examined in terms of three categories as deadline problem, budget problem 

and time-cost curve (Pareto front curve) problem. Deadline problem aims to minimize the total cost with respect 

to a given project deadline. Budget problem, on the other hand, aims to minimize the project duration within a 

given budget. The Pareto front problem aims to construct complete and efficient time-cost profile over the set of 

feasible durations [1].  

Methods proposed to solve DTCTP can be classified as exact methods, heuristics and meta-heuristics. De et al. 

(1997) [2] define DTCTP as strongly non-polynomial hard (NP-hard). Hence, exact methods may require 

significant amount of computational time [3]. On the other hand, exact methods guarantee optimality. Hence, they 

provide a benchmark to evaluate the results of heuristic and meta-heuristics. As a pioneer study within the context 
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of heuristics, Siemens (1971) [4] presented the Siemens approximation method (SAM) for the cost optimization 

problem with strict deadlines, and implemented it on a problem with eight activities. Goyal (1975) [5] proposed a 

modified version of SAM and used the same example with 8 activities. Moselhi (1993) [6] developed a heuristic 

based on schedule compression. Apart from these, numerous meta-heuristics have been presented for the DTCTP. 

Hegazy (1999) [7] developed a genetic algorithm (GA) for the cost optimization problem. Sonmez and Bettemir 

(2012) [8] developed a hybrid strategy based on GAs, simulated annealing (SA), and quantum simulated annealing 

techniques (QSA) for the cost optimization problem. Zheng (2015) [9] presented a GA for the discrete time-cost-

environment trade-off problem. Zhang et al. (2015) [10] proposed a GA for the DTCTP in repetitive projects. 

Elbeltagi et al. (2007) [11] presented a shuffled frog-leaping algorithm for the cost optimization problem. 

Vanhoucke and Debels. (2007) [1] developed a meta-heuristic involving tabu-search and truncated dynamic 

programming for the cost optimization problem with strict deadlines. Abdel-Raheem and Khalafallah (2011) [12], 

proposed an evolutionary algorithm which simulates the behavior of electrons moving through electric circuit 

branches for the cost optimization problem. Tavana et al. (2014) [13] presented two multi-objective procedures 

based on Ɛ-constraint method and dynamic self-adaptive evolutionary algorithm for the discrete time-cost-quality 

trade-off problem. Elbeltagi et al. (2005) [14] and Bettemir (2009) [15] adopted the particle swarm optimization 

method (PSO) for the cost optimization problem. 

In terms of exact methods, mixed integer programming (MIP), dynamic programming (DP) and branch and 

bound algorithm are the most widely known examples in the literature. Meyer and Shaffer (1963) [16], Crowston 

and Thompson (1967) [17], Crowston (1970) [18], Harvey and Patterson (1979) [19] are the pioneer studies 

solving TCT with mixed MIP algorithms., Liu et al. (1995) [20] solved TCT problem for a network with seven 

activities in Microsoft Excel environment linear and integer programming., Moussourakis and Haksever (2004) 

[3] presented a flexible MIP model for TCT problems. The term flexible represents that the model has the 

capability to solve different TCT problems by applying minor modifications. Deadline problem was studied with 

a problem including 7 activities. Vanhoucke (2005) [21] proposed a branch and bound algorithm for the cost 

optimization problem with strict deadlines and time-switch constraints. The algorithm is capable of solving 

instances with up to 30 activities. Akkan et al. (2005) [22] provided lower and upper bounds for the cost 

optimization problem with strict deadlines. Hazir et al. (2010) [23] presented an exact method based on Benders 

Decomposition for the duration optimization problem, and was able to solve instances including up to 136 activities 

with 10 modes within 90 minutes. Szmerekovsky and Venkateshan (2012) [24] studied four integer programming 

formulations for irregular time-cost trade-offs and achieved optimal solutions for instances including up to 90 

activities. 

In spite of existing studies, there is a gap in the literature in terms of exact methods that are applicable to medium 

to large scale DTCTPs reflecting the size of real-life construction projects. Liberatore et al. (2001) [25] indicates 

that a real-life construction project consists more than 300 activities. Hence, the main objective of this paper is to 

generate medium and large size problem instances including delay penalty and to provide a MIP model for solving 

these instances. 

2. Problem Set Generation 

There are few popular benchmark instances for DTCTP in the literature. The network generated by Feng et al 

(1997) [26] is one of them. However, problem includes only 18 activities. Within the scope of this study, medium 

and large scale problem instances are generated using ProGen/max random network generator developed by 

Schwindt (1995) [27].  

Project networks are developed with four different complexity indexes. In ProGen/max, complexity index is 

represented by Thesen restrictiveness coefficient. Accordingly, four different Thesen restrictiveness coefficients 

of; 0.2, 0.4, 0.6, and 0.8 are used for networks. For each of these coefficients, networks including 50, 100, 200, 

500 and 1000 activities are generated. Details of the problem sets are provided in Table 1. 
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Table 18: Parameter Inputs Entered to ProGen/max for Different Number of Activities. 

Parameter 
50  

Activities 

100  

Activities 

200 

Activities 

500 

Activities 

1000 

Activities 

Minimal Number of  

Initial Activities 
1 1 1 1 1 

Maximal Number of  

Initial Activities 
12 20 20 20 20 

Minimal Number of  

Terminal Activities 
1 1 1 1 1 

Maximal Number of  

Terminal Activities 
12 20 20 20 20 

Maximal Number of  

Predecessor Activities 
12 20 20 20 20 

Maximal Number of  
Successor Activities 

12 20 20 20 20 

Degree of Redundancy 0.1 0.1 0.1 0.1 0.1 

 

ProGen/max is actually designed to generate problem networks for resource constraint project scheduling. The 

network generator does not create time-cost modes for DTCTP. Hence, it is utilized only for formation of networks. 

Time-cost modes for the created networks are prepared in Microsoft Excel 2010. Determination of the modes is 

done according to Akkan et al. (2005) [22]. For the time-cost modes, three intervals including 2-5, 6-10, and 11-

15 modes are used. Duration of each time-cost mode is selected randomly between 3 days and 123 days. This 

interval is divided to the number of modes accordingly. For instance, if number of modes for an activity is five: 

 

 duration of the first mode is chosen between 99 days and 123 days, 

 duration of the second mode is chosen between 75 days and 98 days, 

 duration of the third mode is chosen between 51 days and 74 days, 

 duration of the fourth mode is chosen between 27 days and 50 days, 

 duration of the fifth mode is chosen between 3 days and 26 days. 

 

   The amount of direct cost for the first mode is determined randomly between 100 USD and 50000 USD. Costs 

for the remaining modes are determined according to following formula used by Akkan et al. (2005) [22]. 

 

1 1*( - )k k k k kc c s d d                                                                     (2.1) 

 

1

1

where,

: cost value for time-cost mode 1

: cost value for time-cost mode 

: randomly generated time-cost slope value

: duration value for time-cost mode 

: duration value for time-cost mode 

k

k

k

k

k

c k

c k

s

d k

d k







  

 

Randomly generated time-cost slope values are determined between 10 and 100. In all the created networks, 

there are two dummy activities representing the start and finish of the project, which do not have a duration and 

cost. Time-cost modes of a sample network is given in Table 2. 
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Table 19: Time-Cost Modes for Activities. 

 
 

Generally, construction projects include a delay penalty. Therefore, a delay penalty is included in the problems.  

The project deadline and delay penalty are determined by: 

 

-

2

CPMMax CPMMin
Deadline CPMMin                                   (2.2) 

Cost of   =   * 2Delay Penalty Indirect Cost                           (2.3) 

 

where

: Maximum  duration calculated by taking the longest duration in time-cost modes of the activities

: Minimum  duration calculated by taking the shortest duration in time-cost modes

CPMMax CPM

CPMMin CPM  of the activities

: Project deadlineDeadline

  

Using this model, delay penalty is added to project networks. Cost of delay penalty is determined as the double 

of indirect costs for each network. If the project duration exceeds the defined deadline, delay penalty is added to 

the total cost. 

There are four different complexity indexes and 3 different mode intervals for project networks having 50, 100, 

200, 500, and 1000 activities. 10 instances are prepared for each set. Details of the sets are shown in Table 3. A 

total of 600 test instances are prepared.  The daily indirect cost is set as 250 USD for networks having 50 activities. 

For the rest of the networks, daily indirect cost is set as 500 USD. 
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Table 3: Number of Problem Sets Prepared for DTCTP Analyses 

 Number of Time-Cost Modes  

 2--5 6--10 11--15  

 
Thesen 

Restrictiveness 

Coefficient 

Thesen 

Restrictiveness 

Coefficient 

Thesen 

Restrictiveness 

Coefficient 

 
 

 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

 

 
 

Number 

of  
Activities 

Number of Test Instances Number of Test Instances Number of Test Instances 

Daily  
Indirect  

Cost  

(USD) 

50 10 10 10 10 10 10 10 10 10 10 10 10 250 

100 10 10 10 10 10 10 10 10 10 10 10 10 500 

200 10 10 10 10 10 10 10 10 10 10 10 10 500 

500 10 10 10 10 10 10 10 10 10 10 10 10 500 

1000 10 10 10 10 10 10 10 10 10 10 10 10 500 

3. Model Description  

In order to minimize the total cost of the projects comprised of direct and indirect costs, the following model 

based on De et al. (1995) [28] is proposed. 

 Sets 

: Predecessors of activity 

: Activities in the network (exluding dummy activities)

jPd j

S
 

 Parameters 

: cost of activity  for time-cost mode 

: daily indirect cost

: duration of activity  for time-cost mode 

( ) : number of time-cost modes for activity 

: daily delay penalty cost

jk

c

jk

p

dc j k

i

d j k

m j j

d

 

 Variables 

: finish date of activity j

: finish date of activity 

: binary variable which is 1 if time-cost mode  is chosen to realize activity , if not 0. 

: total duration of the project

: amount of 

j

h

jk

delay

Ft

Ft h

x k j

D

D delay

: project deadlinedeadlineD

 

 Mixed Integer Programming Model 

( )

1 1

min
m jS

jk jk c p delay

j k

dc x Di d D
 

                   (3.1) 
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Constraints:  
(j)

1

1,    
m

jk

k

x j S


                       (3.2) 

(j)

  

1 1

,    and
mS

j h jk jk j

j k

Ft Ft d x h Pd j S
 

                 (3.3) 

1SD Ft                  (3.4) 

0 0Ft                    (3.5) 

delay deadlineD D D                      (3.6) 

0D                        (3.7) 

0delayD                   (3.8) 

{0,1},   , and ( )jkx j S h m j                  (3.9) 

0,    jFt j S                   (3.10) 

Objective function (3.1) aims to minimize the total cost of the project that equals to the summation of direct 

and indirect costs. Constraint (3.2) ensures that only one time-cost mode is chosen for each activity. For instance, 

if the second mode of Activity 3 is chosen in a sample network, 𝑥32 value is equal to 1 and 𝑥31, 𝑥33, 𝑥34, 𝑥35 are 

equal to 0. Since these values are the multipliers of activity costs, only the selected time-cost mode affects the total 

project duration. Constraint (3.3) defines that an activity cannot finish earlier than the date represents the 

summation of activity’s duration of the selected mode and the finish date of its predecessors. Constraint (3.4) 

explains that the project cannot be completed until the final dummy activity is finished. In constraint (3.5), finish 

date of initial dummy activity is set to 0. Constraint (3.6) represents the relation between the deadline and the 

amount of delay. The next two constraints (3.7), (3.8) explain that both the total project duration and the amount 

of delay should be positive values respectively. (3.9) indicates that 𝑥𝑗𝑘 is a binary variable. The last constraint 

(3.10) shows that finish dates of all activities must be greater than 0. Finally, the dummy activities (Activity 0 and 

Activity S+1) do not have any duration and cost. 

4. Computational Experiments 

GUROBI Optimizer 5.6.3 is used to solve the MIP model given in the previous section. First, problem networks 

given in Section 2 are modelled in terms of LP format. Then, they are analyzed in GUROBI, with a time limit of 

600 seconds for each problem. All experiments are conducted with a desktop computer using Windows 7 

Professional Edition (64-bit) operating system with an Intel Core i5 3.10 CPU GHz and a 4.00 GB random access 

memory (RAM). The number of problem instances that are solved to optimal are in the given in the following 

Table 4. 

Table 4. Number of Problems Solved to Optimal. 

               

 Number of Time-Cost Modes   

 2--5 6--10 11--15   

 
Thesen 

Restrictiveness 

Coefficient 

Thesen 
Restrictiveness 

Coefficient 

Thesen 
Restrictiveness 

Coefficient 

 

 

 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8   

Number 

of  

Activities 

Number of Test Instances Number of Test Instances Number of Test Instances 

Solved 

Number 

of Total 

Instances 

Solution 

Percentage  

(%) 

50 10 10 10 10 10 10 10 10 10 10 10 10 120 100 

100 10 10 10 10 9 10 5 10 10 10 10 10 114 95 

200 10 10 10 10 9 9 5 9 6 7 5 8 98 81,7 

500 10 10 8 10 5 5 3 2 5 4 6 5 73 60,8 

1000 7 6 8 7 3 2 5 4 4 6 1 4 57 47,5 
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All of the problems consisting of 50 activities are solved within the time limit. As the number of activities in a 

network increases, the number of solved problems decreases. The CPU time of the problems solved to optimal are 

shown in Table 5. 

Table 5: Average CPU Time in Optimal Cost Solutions 

 Number of Time-Cost Modes 

 2--5 6--10 11--15 

 

Thesen 
Restrictiveness 

Coefficient 

Thesen 
Restrictiveness 

Coefficient 

Thesen 
Restrictiveness 

Coefficient 

 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

Number 

of  
Activities 

CPU Time (seconds) 

50 0.12 0.14 0.24 0.13 0.41 0.87 1.04 0.58 0.82 1.06 3.33 0.93 

100 0.54 0.28 1.28 0.33 176.34 56.54 2.08 0.96 0.03 0.35 1.33 1.22 

200 8.34 0.54 2.76 3.32 161.23 13.54 77.80 7.78 168.44 86.68 11.40 3.00 

500 29.20 9.69 22.32 24.29 134.22 96.39 16.26 175.76 81.26 145.20 220.17 38.13 

1000 20.75 54.02 68.28 90.38 303.93 267.66 201.60 119.37 316.39 87.62 58.37 285.16 

 

Results given in Table 5 are compared to similar studies in the literature. Hazir et all (2011) [23] solve a 136-

activity network with an MIP algorithm in 19139.61 seconds. Furthermore, the model proposed by Szmerekovsky 

and Venkateshan (2012) [24] require a CPU time of 206 seconds to solve a 90-activity network.  

5. Conclusion 

In this study a total of 600 problems DTCTP instances, including 1000 activities is generated. A MIP model 

including a delay penalty is used to solve the benchmark problems to optimal.  The majority of the small and 

medium scale instances and some of the large scale instances of are solved to optimal, within 600 seconds with 

GUROBI Optimizer 5.6.3.  Hence, optimal solutions can be achieved for the deadline problem for evaluating the 

results of the heuristic and meta-heuristic methods. The CPU time of the MIP model presented can be decreased 

by using parallel processing methods which is a potential area for a future study. 
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